Progress on wave physics in 1D waveguide cavity and cross cavity

Yutong Zhao
Oct 15th 2018

Target: Understanding level attraction

Method:

- 1. Maxwell equation + cavity perturbation
- 2. Experiment
- 3. Simulation from CST software

Scenario:

- 1. 1D waveguide cavity
- 2. Planar cross cavity

Maxwell equations

Vector wave equation

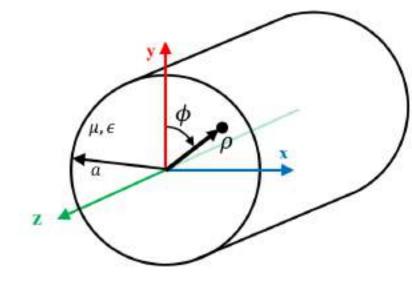
$$\begin{split} \nabla \times \vec{e} &= -\vec{M} - j\omega\mu\vec{h}, \\ \nabla^2 \vec{e} + k^2 \vec{e} &= \nabla \times \vec{M} + j\omega\mu\vec{J} + \frac{1}{\epsilon} \nabla q_e, \\ \nabla^2 \vec{h} + k^2 \vec{h} &= -\nabla \times \vec{J} + j\omega\mu\vec{M} + \frac{1}{\mu} \nabla q_m, \\ \mathbf{v} \cdot n &= -\frac{1}{\mu}, \end{split}$$

We assume
$$\vec{M} = \vec{J} = \vec{q}_e = q_m = 0$$
, In a source free region $\rightarrow \vec{e}, \vec{h}$

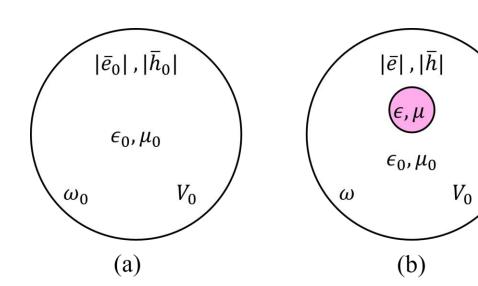
Cavity perturbation theory

$$\frac{\omega - \omega_0}{\omega} = -\frac{\iiint_v (\Delta \epsilon \bar{e} \cdot \bar{e_0}^* + \Delta \mu \bar{h} \cdot \bar{h_0}^*) dV}{\iiint_v (\epsilon \bar{e} \cdot \bar{e_0}^* + \mu \bar{h} \cdot \bar{h_0}^*) dV},$$

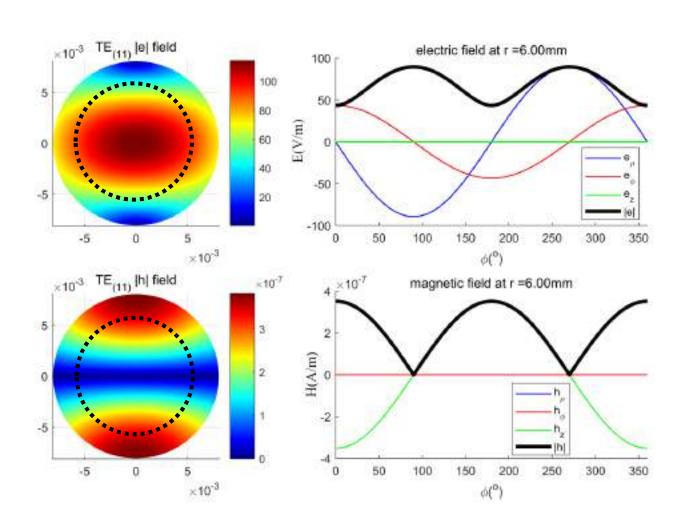
$$\frac{\omega - \omega_0}{\omega_0} \approx -\frac{\iiint_v (\Delta \epsilon |\bar{e_0}|^2 + \Delta \mu |\bar{h_0}|^2) dV}{\iiint_v (\epsilon |\bar{e_0}|^2 + \mu |\bar{h_0}|^2) dV}.$$

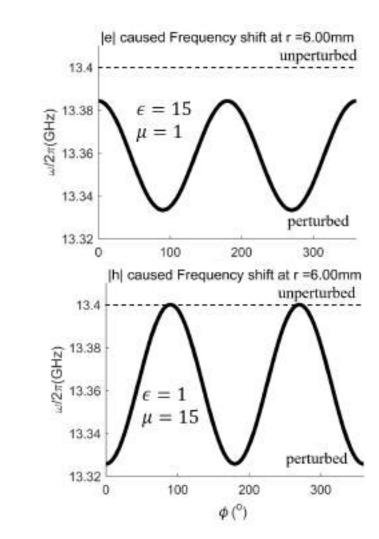


$$\rightarrow \vec{e}, \vec{h}$$

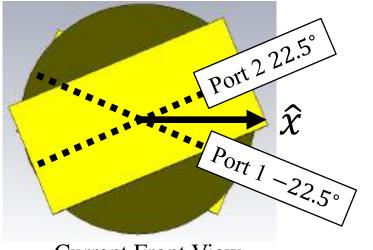


Calculations

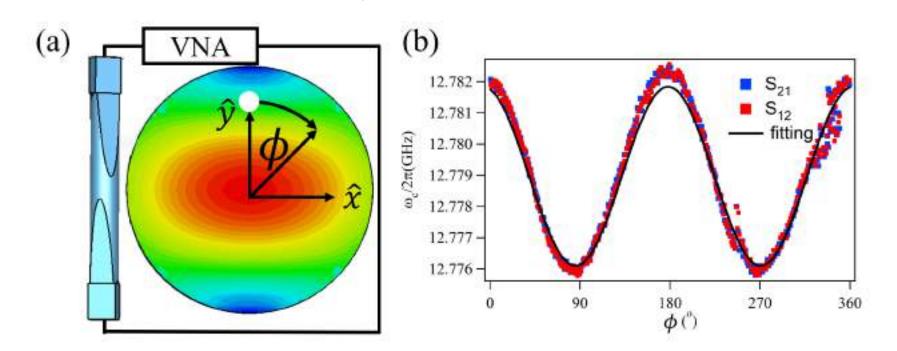




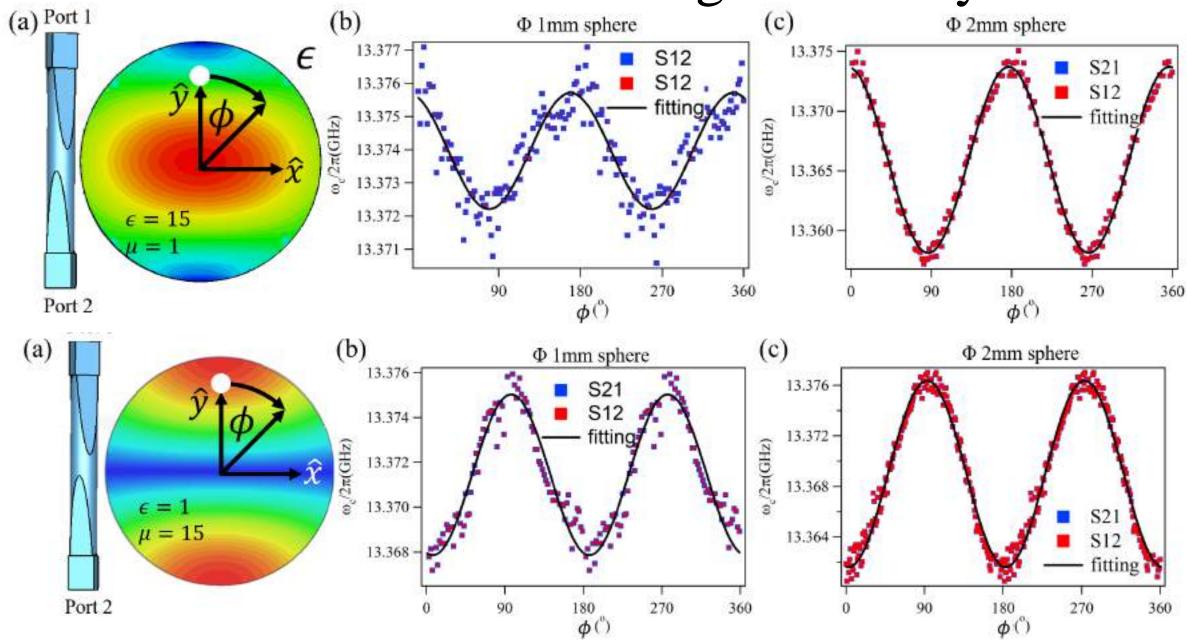
Experiment



Current Front View

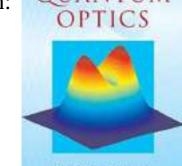


Simulations —— 1D waveguide cavity



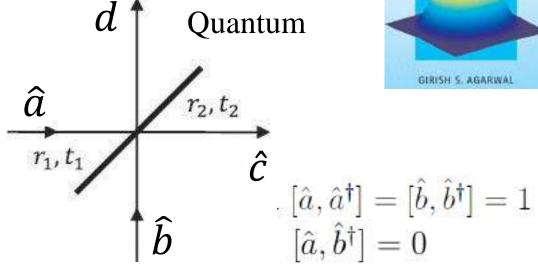
Simulations planar cross cavity short Port 1 Port 2 -10-Port2 Port1 -20 --30 short 10 56mm×56mm 6 ω/2π(GHz) Port 1+2 Port1 - Port2 20 $\omega_0/2\pi(GHz)$ H(A/m) 3.32 $\mu = 15$ -S12 -S21 $\epsilon = 1$ 20 10 - - Port1 - Port2 20 - $\omega_0/2\pi(GHz)$ - Port1+2 3.304 3.302 -S12 S21 3.300 20 -10-10

Possible explanation (need further study)



$$\hat{a}$$
 E_r
 \hat{d}
Classical
 \hat{c}
 E_t
 r_1, t_1
 E_t

$$E_t = t_1 E_i$$
 $\hat{d} = t_1 \hat{a}$ $E_r = r_1 E_i$. $\hat{c} = r_1 \hat{a}$.



$$\begin{pmatrix} \hat{c} \\ \hat{d} \end{pmatrix} = \begin{pmatrix} t1 & r2 \\ r1 & t2 \end{pmatrix} \begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix}$$

This do not satisfy the following:

$$[\hat{c}, \hat{d}^{\dagger}] = 0.$$

In quantum theory vacuum fields are always present. Hence even if no field is sent from the other port of the beam splitter, the vacuum field enters from this port.

Next step on wave physics:

- 1. Further study on vacuum field.
- 2. Derive the coupling using LLG equation and Maxwell equation.

DRDC project (This week)

• Dielectric imaging using SSR sensor

